Search results
Results from the WOW.Com Content Network
In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base ( a by b ) and height ( c ), such that a , b , and c are distinct.
The diamond crystal structure belongs to the face-centered cubic lattice, with a repeated two-atom pattern.. In crystallography, a crystal system is a set of point groups (a group of geometric symmetries with at least one fixed point).
In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. [1] Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.
In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type.Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.
It has an orthorhombic crystal structure. [4] It is a hard, brittle material, [ 4 ] normally classified as a ceramic in its pure form, and is a frequently found and important constituent in ferrous metallurgy .
In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic system. They form a parallelogram prism. Hence two pairs of vectors are perpendicular (meet at right angles), while the third pair makes an angle other than 90°.
Aragonite crystal structure. The crystal lattice of aragonite differs from that of calcite, resulting in a different crystal shape, an orthorhombic crystal system with acicular crystal. [5] Repeated twinning results in pseudo-hexagonal forms.
The following table gives the crystalline structure of the most thermodynamically stable form(s) for elements that are solid at standard temperature and pressure.Each element is shaded by a color representing its respective Bravais lattice, except that all orthorhombic lattices are grouped together.