enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor series of any polynomial is the polynomial itself.. The Maclaurin series of ⁠ 1 / 1 − x ⁠ is the geometric series + + + +. So, by substituting x for 1 − x, the Taylor series of ⁠ 1 / x ⁠ at a = 1 is

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.

  4. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...

  5. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    The cosine function and all of its Taylor polynomials are even functions. In mathematics, an even function is a real function such that for every in its domain. Similarly, an odd function is a function such that for every in its domain. They are named for the parity of the powers of the power functions which satisfy each condition: the function ...

  6. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    Newton's formula is of interest because it is the straightforward and natural differences-version of Taylor's polynomial. Taylor's polynomial tells where a function will go, based on its y value, and its derivatives (its rate of change, and the rate of change of its rate of change, etc.) at one particular x value. Newton's formula is Taylor's ...

  7. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    Calculus. In calculus, the power rule is used to differentiate functions of the form , whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's ...

  8. Euler numbers - Wikipedia

    en.wikipedia.org/wiki/Euler_numbers

    Euler numbers. In mathematics, the Euler numbers are a sequence En of integers (sequence A122045 in the OEIS) defined by the Taylor series expansion. where is the hyperbolic cosine function. The Euler numbers are related to a special value of the Euler polynomials, namely: The Euler numbers appear in the Taylor series expansions of the secant ...

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Taylor's theorem gives a precise bound on how good the approximation is. If f is a polynomial of degree less than or equal to d, then the Taylor polynomial of degree d equals f. The limit of the Taylor polynomials is an infinite series called the Taylor series. The Taylor series is frequently a very good approximation to the original function.