Search results
Results from the WOW.Com Content Network
About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium. All 11 are necessary for life. The remaining elements are trace elements, of which more than a dozen are ...
Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically important part of many aspects of human health and disease.
The name hemoglobin (or haemoglobin) is derived from the words heme (or haem) and globin, reflecting the fact that each subunit of hemoglobin is a globular protein with an embedded heme group. Each heme group contains one iron atom, that can bind one oxygen molecule through ion-induced dipole forces.
Ferritin is a universal intracellular and extracellular protein that stores iron and releases it in a controlled fashion. The protein is produced by almost all living organisms, including archaea, bacteria, algae, higher plants, and animals. It is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in ...
Iron in biology. Iron in hemoglobin is the source of the red coloration of vertebrate blood. Iron is an important biological element. [1][2][3] It is used in both the ubiquitous iron-sulfur proteins [1] and in vertebrates it is used in hemoglobin which is essential for blood and oxygen transport. [4]
Biometal (biology) Element percentages in the human body. Biometals (also called biocompatible metals, bioactive metals, metallic biomaterials) are metals normally present, in small but important and measurable amounts, in biology, biochemistry, and medicine. The metals copper, zinc, iron, and manganese are examples of metals that are essential ...
With chemical properties exceedingly similar to typical nutrients like iron and calcium, toxic metals look virtually the same to the body. So, it starts incorporating the toxic elements into the ...
The abundance of metal binding proteins may be inherent to the amino acids that proteins use, as even artificial proteins without evolutionary history will readily bind metals. [8] Most metals in the human body are bound to proteins. For instance, the relatively high concentration of iron in the human body is mostly due to the iron in hemoglobin.