Search results
Results from the WOW.Com Content Network
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
A classic example of recursion is computing the factorial, which is defined recursively by 0! := 1 and n! := n × (n - 1)!.. To recursively compute its result on a given input, a recursive function calls (a copy of) itself with a different ("smaller" in some way) input and uses the result of this call to construct its result.
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1][2] Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion ...
The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...
Primitive recursive function. In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed before entering the loop). Primitive recursive functions form a strict ...
Tail call. In computer science, a tail call is a subroutine call performed as the final action of a procedure. [1] If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and is often easy to optimize ...
A similar result holds for the rising factorial and the backward difference operator. The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and ...