Search results
Results from the WOW.Com Content Network
The residuals from the least squares linear fit to this plot are identical to the residuals from the least squares fit of the original model (Y against all the independent variables including Xi). The influences of individual data values on the estimation of a coefficient are easy to see in this plot.
This will usually involve plotting the standardized residuals against fitted values and covariates to look for mean-variance problems or missing pattern, and may also involve examining Correlograms (ACFs) and/or Variograms of the residuals to check for violation of independence. If the model mean-variance relationship is correct then scaled ...
An illustrative plot of a fit to data (green curve in top panel, data in red) plus a plot of residuals: red points in bottom plot. Dashed curve in bottom panel is a straight line fit to the residuals. If the functional form is correct then there should be little or no trend to the residuals - as seen here.
The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis , where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals .
The CCPR (component and component-plus-residual) plot is a refinement of the partial residual plot, adding ^ . This is the "component" part of the plot and is intended to show where the "fitted line" would lie.
In particular, the residuals should be independent of each other and constant in mean and variance over time. (Plotting the mean and variance of residuals over time and performing a Ljung–Box test or plotting autocorrelation and partial autocorrelation of the residuals are helpful to identify misspecification.) If the estimation is inadequate ...
Residual plots plot the difference between the actual data and the model's predictions: correlations in the residual plots may indicate a flaw in the model. Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the ...
Residuals against explanatory variables not in the model. Any relation of the residuals to these variables would suggest considering these variables for inclusion in the model. Residuals against the fitted values, ^. Residuals against the preceding residual. This plot may identify serial correlations in the residuals.