Search results
Results from the WOW.Com Content Network
In the era of the old quantum theory, starting from Max Planck's proposal of quanta in his model of blackbody radiation (1900) and Albert Einstein's adaptation of the concept to explain the photoelectric effect (1905), and until Erwin Schrödinger published his eigenfunction equation in 1926, [1] the concept behind quantum numbers developed based on atomic spectroscopy and theories from ...
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
In the words of quantum physicist Richard Feynman, quantum mechanics deals with "nature as She is—absurd". [4] Features of quantum mechanics often defy simple explanations in everyday language. One example of this is the uncertainty principle: precise measurements of position cannot be combined with precise measurements of velocity.
A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h /2 π , also known as the reduced Planck constant or Dirac constant . Quantity (common name/s)
The magnetic quantum number measures the component of the angular momentum in a particular direction. The choice of direction is arbitrary; conventionally the z-direction is chosen. The fourth quantum number, the spin quantum number (pertaining to the "orientation" of the electron's spin) is denoted m s, with values + 1 ⁄ 2 or − 1 ⁄ 2.
The principal quantum number was first created for use in the semiclassical Bohr model of the atom, distinguishing between different energy levels. With the development of modern quantum mechanics, the simple Bohr model was replaced with a more complex theory of atomic orbitals. However, the modern theory still requires the principal quantum ...
Generalized statistical model of quantum mechanics; A related topic is the relationship to classical mechanics. Any new physical theory is supposed to reduce to successful old theories in some approximation. For quantum mechanics, this translates into the need to study the so-called classical limit of quantum mechanics. Also, as Bohr emphasized ...
Calculations based on the Bohr–Sommerfeld model were able to accurately explain a number of more complex atomic spectral effects. For example, up to first-order perturbations, the Bohr model and quantum mechanics make the same predictions for the spectral line splitting in the Stark effect. At higher-order perturbations, however, the Bohr ...