Search results
Results from the WOW.Com Content Network
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object.For example, a cube has six faces in this sense.. In more modern treatments of the geometry of polyhedra and higher-dimensional polytopes, a "face" is defined in such a way that it may have any dimension.
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices, and 120 edges.
In geometry, an icosahedron (/ ˌ aɪ k ɒ s ə ˈ h iː d r ən,-k ə-,-k oʊ-/ or / aɪ ˌ k ɒ s ə ˈ h iː d r ən / [1]) is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" (/-d r ə /) or "icosahedrons".
In geometry, the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron's vertices. Intuitively, it may be regarded as footballs (or soccer balls) that are typically patterned with white hexagons and black pentagons.
A skeletal pyramid with its base highlighted. In geometry, a base is a side of a polygon or a face of a polyhedron, particularly one oriented perpendicular to the direction in which height is measured, or on what is considered to be the "bottom" of the figure. [1]
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).
The shape of the face is influenced by the bone-structure of the skull, and each face is unique through the anatomical variation present in the bones of the viscerocranium (and neurocranium). [1] The bones involved in shaping the face are mainly the maxilla, mandible, nasal bone, zygomatic bone, and frontal bone.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.