enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    A geometrical arrangement used in deriving the Kirchhoff's diffraction formula. The area designated by A 1 is the aperture (opening), the areas marked by A 2 are opaque areas, and A 3 is the hemisphere as a part of the closed integral surface (consisted of the areas A 1, A 2, and A 3) for the Kirchhoff's integral theorem.

  3. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r

  4. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Diffraction can occur with any kind of wave. Ocean waves diffract around jetties and other obstacles. Circular waves generated by diffraction from the narrow entrance of a flooded coastal quarry. Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree. [19]

  5. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  6. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...

  7. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    Collective matter waves are used to model phenomena in solid state physics; standing matter waves are used in molecular chemistry. Matter wave concepts are widely used in the study of materials where different wavelength and interaction characteristics of electrons, neutrons, and atoms are leveraged for advanced microscopy and diffraction ...

  8. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    When the equation is applied to waves, k is known as the wave number. The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The ...

  9. Absorption (acoustics) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(acoustics)

    The fraction of sound absorbed is governed by the acoustic impedances of both media and is a function of frequency and the incident angle. [2] Size and shape can influence the sound wave's behavior if they interact with its wavelength, giving rise to wave phenomena such as standing waves and diffraction.