Search results
Results from the WOW.Com Content Network
The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...
Single-pole circuit breakers feed 120 V circuits from one of the 120 V buses within the panel, or two-pole circuit breakers feed 240-volt circuits from both buses. 120 V circuits are the most common, and used to power NEMA 1 and NEMA 5 outlets, and most residential and light commercial direct-wired lighting circuits.
Phasor diagram showing 240 V delta and center-tapped phase (a–c) creating two 120 V pairs. Consider the low-voltage side of a 120/240 V high leg delta connected transformer, where the b phase is the high leg. The line-to-line voltage magnitudes are all the same: = = =.
Closer to the customer, a distribution transformer steps the primary distribution power down to a low-voltage secondary circuit, usually 120/240 V in the US for residential customers. The power comes to the customer via a service drop and an electricity meter. The final circuit in an urban system may be less than 15 metres (50 ft) but may be ...
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
A "transformer bank", widely used in North America: three single-phase transformers connected to make a 3-phase transformer. The low-voltage secondary windings are attached to three or four terminals on the transformer's side. In North American residences and small businesses, the secondary is often the split-phase 120/240-volt system. The 240 ...
There is also a three wire 240/480 volt version that is not Blondel compliant. Also in use are three phase meters that are not Blondel compliant, such as forms 14S and 15S, but they can be easily replaced by modern meters and can be considered obsolete. A form 2S watt-hour meter used for single phase 120-240 volt, 3 wire systems.
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.