Search results
Results from the WOW.Com Content Network
As explained above, while s 2 is an unbiased estimator for the population variance, s is still a biased estimator for the population standard deviation, though markedly less biased than the uncorrected sample standard deviation. This estimator is commonly used and generally known simply as the "sample standard deviation".
For instance, if estimating the effect of a drug on blood pressure with a 95% confidence interval that is six units wide, and the known standard deviation of blood pressure in the population is 15, the required sample size would be =, which would be rounded up to 97, since sample sizes must be integers and must meet or exceed the calculated ...
Statistical hypothesis testing plays an important role in the whole of statistics and in statistical inference. For example, Lehmann (1992) in a review of the fundamental paper by Neyman and Pearson (1933) says: "Nevertheless, despite their shortcomings, the new paradigm formulated in the 1933 paper, and the many developments carried out within ...
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
In regression analysis, the term "standard error" refers ... the population standard deviation and have a mean that differs from the true population mean, and the ...
Standard deviation is a widely used measure of the spread or dispersion of a dataset. It quantifies the average amount of variation or deviation of individual data points from the mean of the dataset. It uses squared deviations, and has desirable properties. Standard deviation is sensitive to extreme values, making it not robust. [7]
In statistics, a population is a set of similar items or events which is of interest for some question or experiment. [1] A statistical population can be a group of existing objects (e.g. the set of all stars within the Milky Way galaxy) or a hypothetical and potentially infinite group of objects conceived as a generalization from experience (e.g. the set of all possible hands in a game of ...