enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  3. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    Geometric interpretation of the angle between two vectors defined using an inner product Scalar product spaces, over any field, have "scalar products" that are symmetrical and linear in the first argument. Hermitian product spaces are restricted to the field of complex numbers and have "Hermitian products" that are conjugate-symmetrical and ...

  5. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    It is positive definite: for all vectors x, x ⋅ x ≥ 0 , with equality if and only if x = 0. An operation on pairs of vectors that, like the dot product, satisfies these three properties is known as a (real) inner product. A vector space equipped with such an inner product is known as a (real) inner product space.

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.

  7. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euclidean magnitudes of the two vectors and the cosine of the angle between them. These definitions are equivalent when using Cartesian coordinates.

  8. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  9. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    The dot product in Cartesian coordinates (Euclidean space with an orthonormal basis set) is simply the sum of the products of components. In orthogonal coordinates, the dot product of two vectors x and y takes this familiar form when the components of the vectors are calculated in the normalized basis: