enow.com Web Search

  1. Ads

    related to: multiplying negative integers videos for 3rd generation math pdf notes

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  3. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    The power of 3 multiplying a is independent of the value of a; it depends only on the behavior of b. This allows one to predict that certain forms of numbers will always lead to a smaller number after a certain number of iterations: for example, 4 a + 1 becomes 3 a + 1 after two applications of f and 16 a + 3 becomes 9 a + 2 after four ...

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    If n is a positive integer, the integers from 1 to n − 1 that are coprime to n (or equivalently, the congruence classes coprime to n) form a group, with multiplication modulo n as the operation; it is denoted by × n, and is called the group of units modulo n, or the group of primitive classes modulo n.

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]

  6. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    The main arithmetic operations are addition, subtraction, multiplication, and division. Arithmetic is an elementary branch of mathematics that studies numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms.

  7. −1 - Wikipedia

    en.wikipedia.org/wiki/%E2%88%921

    The third equality follows from the fact that 1 is a multiplicative identity. But now adding 1 to both sides of this last equation implies (−1) ⋅ (−1) = 1. The above arguments hold in any ring, a concept of abstract algebra generalizing integers and real numbers. [1]: p.48 0, 1, −1, i, and − i in the complex or Cartesian plane

  8. Talk:Negative number - Wikipedia

    en.wikipedia.org/wiki/Talk:Negative_number

    You are defining that multiplication of negative numbers follows the rules of a ring. If we had that a times b is 0 if either a or b is negative that would also be consistent with the rules for the multiplication for non-negative numbers. It is because we want the rules for negative numbers to be nicer than that that they are defined the way ...

  9. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.

  1. Ads

    related to: multiplying negative integers videos for 3rd generation math pdf notes