Search results
Results from the WOW.Com Content Network
The eigenvalues of a 3×3 matrix are the roots of a cubic polynomial which is the characteristic polynomial of the matrix. The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation.
The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points , that is the points where the slope of the function is zero. [ 2 ]
If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete. In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out.
The first degree polynomial equation could also be an exact fit for a single point and an angle while the third degree polynomial equation could also be an exact fit for two points, an angle constraint, and a curvature constraint. Many other combinations of constraints are possible for these and for higher order polynomial equations.
A polynomial equation is solvable by radicals if its Galois group is a solvable group. In the case of irreducible quintics, the Galois group is a subgroup of the symmetric group S 5 of all permutations of a five element set, which is solvable if and only if it is a subgroup of the group F 5 , of order 20 , generated by the cyclic permutations ...
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
The square-free factorization of a polynomial p is a factorization = where each is either 1 or a polynomial without multiple roots, and two different do not have any common root. An efficient method to compute this factorization is Yun's algorithm .