Search results
Results from the WOW.Com Content Network
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
The first distance, usually represented as r or ρ (the Greek letter rho), is the magnitude of the projection of the vector onto the xy-plane. The angle, usually represented as θ or φ (the Greek letter phi ), is measured as the offset from the line collinear with the x -axis in the positive direction; the angle is typically reduced to lie ...
In mathematics, projectivization is a procedure which associates with a non-zero vector space V a projective space P(V), whose elements are one-dimensional subspaces of V.More generally, any subset S of V closed under scalar multiplication defines a subset of P(V) formed by the lines contained in S and is called the projectivization of S.
A projection on a vector space is a linear operator : such that =.. When has an inner product and is complete, i.e. when is a Hilbert space, the concept of orthogonality can be used.
A vector space is finite-dimensional if its dimension is a natural number. Otherwise, it is infinite-dimensional, and its dimension is an infinite cardinal. Finite-dimensional vector spaces occur naturally in geometry and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics.
Vector projection, orthogonal projection of a vector onto a straight line; Projection (relational algebra), a type of unary operation in relational algebra; Projective geometry, the study of geometric properties that are invariant with respect to projective transformations; Projective module, a generalization of a free module
A projective space may be constructed as the set of the lines of a vector space over a given field (the above definition is based on this version); this construction facilitates the definition of projective coordinates and allows using the tools of linear algebra for the study of homographies.
In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday ...