Search results
Results from the WOW.Com Content Network
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
The first distance, usually represented as r or ρ (the Greek letter rho), is the magnitude of the projection of the vector onto the xy-plane. The angle, usually represented as θ or φ (the Greek letter phi ), is measured as the offset from the line collinear with the x -axis in the positive direction; the angle is typically reduced to lie ...
In mathematics, projectivization is a procedure which associates with a non-zero vector space V a projective space P(V), whose elements are one-dimensional subspaces of V.More generally, any subset S of V closed under scalar multiplication defines a subset of P(V) formed by the lines contained in S and is called the projectivization of S.
A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .
A vector space is finite-dimensional if its dimension is a natural number. Otherwise, it is infinite-dimensional, and its dimension is an infinite cardinal. Finite-dimensional vector spaces occur naturally in geometry and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics.
Vector projection, orthogonal projection of a vector onto a straight line; Projection (relational algebra), a type of unary operation in relational algebra; Projective geometry, the study of geometric properties that are invariant with respect to projective transformations; Projective module, a generalization of a free module
Homogeneous coordinates are ubiquitous in computer graphics because they allow common vector operations such as translation, rotation, scaling and perspective projection to be represented as a matrix by which the vector is multiplied. By the chain rule, any sequence of such operations can be multiplied out into a single matrix, allowing simple ...
A projective space may be constructed as the set of the lines of a vector space over a given field (the above definition is based on this version); this construction facilitates the definition of projective coordinates and allows using the tools of linear algebra for the study of homographies.