Search results
Results from the WOW.Com Content Network
Chloroplast DNA (cpDNA), also known as plastid DNA (ptDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid , contain a genome separate from that in the cell nucleus .
For example, 25 chloroplast genomes were sequenced for one molecular phylogenetic study. [1] The flowering plants are especially well represented in complete chloroplast genomes. As of January, 2017, all of their orders are represented except Commelinales, Picramniales, Huerteales, Escalloniales, Bruniales, and Paracryphiales.
Since then, hundreds of chloroplast genomes from various species have been sequenced, but they are mostly those of land plants and green algae—glaucophytes, red algae, and other algal groups are extremely underrepresented, potentially introducing some bias in views of "typical" chloroplast DNA structure and content.
Eukaryotic organisms (animals, plants, fungi and protists) store most of their DNA inside the cell nucleus as nuclear DNA, and some in the mitochondria as mitochondrial DNA or in chloroplasts as chloroplast DNA. [5] In contrast, prokaryotes (bacteria and archaea) store their DNA only in the cytoplasm, in circular chromosomes.
D-loop replication is a proposed process by which circular DNA like chloroplasts and mitochondria replicate their genetic material. An important component of understanding D-loop replication is that many chloroplasts and mitochondria have a single circular chromosome like bacteria instead of the linear chromosomes found in eukaryotes.
The crystal structure of the Ter DNA-Tus protein complex (A) showing the nonblocking and the fork-blocking faces of Tus. (B) A cross-sectional view of the helicase-arresting surface. Replication of the DNA separating the opposing replication forks leaves the completed chromosomes joined as ‘catenanes’ or topologically interlinked circles ...
The cryptomonad nucleomorph also codes for genes that function in plastid maintenance. [7] In cryptophytes and chlorarachniophytes all DNA transfer between the nucleomorph and host genome seems to have ceased, but the process is still going on in a few dinoflagellates (MGD and TGD). [16]
Plastid DNA exists as protein-DNA complexes associated as localized regions within the plastid's inner envelope membrane; and these complexes are called 'plastid nucleoids'. Unlike the nucleus of a eukaryotic cell, a plastid nucleoid is not surrounded by a nuclear membrane. The region of each nucleoid may contain more than 10 copies of the ...