enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    A sphere of radius r has area element = ⁡. This can be found from the volume element in spherical coordinates with r held constant. [9] A sphere of any radius centered at zero is an integral surface of the following differential form: + + =

  3. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...

  4. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.

  5. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The formula for the volume of the ⁠ ⁠-ball can be derived from this by integration. Similarly the surface area element of the ⁠ ⁠-sphere of radius ⁠ ⁠, which generalizes the area element of the ⁠ ⁠-sphere, is given by

  6. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.

  7. Ball (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ball_(mathematics)

    Let (M, d) be a metric space, namely a set M with a metric (distance function) d, and let ⁠ ⁠ be a positive real number. The open (metric) ball of radius r centered at a point p in M , usually denoted by B r ( p ) or B ( p ; r ) , is defined the same way as a Euclidean ball, as the set of points in M of distance less than r away from p , B ...

  8. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  9. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...