Search results
Results from the WOW.Com Content Network
A sphere of radius r has area element = . This can be found from the volume element in spherical coordinates with r held constant. [9] A sphere of any radius centered at zero is an integral surface of the following differential form: + + =
The surface area, or properly the -dimensional volume, of the -sphere at the boundary of the (+) -ball of radius is related to the volume of the ball by the differential equation
In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit n {\displaystyle n} -sphere is an n {\displaystyle n} -sphere of unit radius in ( n + 1 ) {\displaystyle (n+1)} - dimensional Euclidean space ; the unit circle is a ...
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.
Diagram showing a section through the centre of a cone (1) subtending a solid angle of 1 steradian in a sphere of radius r, along with the spherical "cap" (2). The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1.
r is the radius of the sphere, h is the height of the cap, and; sr is the unit, steradian, sr = rad 2. Because the surface area A of a sphere is 4πr 2, the definition implies that a sphere subtends 4π steradians (≈ 12.56637 sr) at its centre, or that a steradian subtends 1/4π ≈ 0.07958 of a sphere.
Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.