Search results
Results from the WOW.Com Content Network
EBM machines usually utilize voltages in the range of 150 to 200 kV to accelerate electrons to about 200,000 km/s. Magnetic lenses are used to focus the electron beam to the surface of the work-piece. By means of electromagnetic deflection system the beam is positioned as needed, usually by means of a computer.
A portative electromagnet is one designed to just hold material in place; an example is a lifting magnet. A tractive electromagnet applies a force and moves something. [8] Electromagnets are very widely used in electric and electromechanical devices, including: Motors and generators; Transformers; Relays; Electric bells and buzzers ...
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
When electric currents are used to produce a magnet in this way, it is called an electromagnet. Electromagnets often use a wire curled up into solenoid around an iron core which strengthens the magnetic field produced because the iron core becomes magnetised.
Electropermanent magnets made with powerful rare-earth magnets are used as industrial lifting (tractive) magnets to lift heavy ferrous metal objects; when the object reaches its destination the magnet can be switched off, releasing the object. Programmable magnets are also being researched as a means of creating self-building structures.
The coil is shaped such that the armature can be moved in and out of the space in the center of the coil, altering the coil's inductance and thereby becoming an electromagnet. The movement of the armature is used to provide a mechanical force to some mechanism, such as controlling a solenoid valve. Although typically weak over anything but very ...
Typical currents range from 0.1 amp per square mm to 5 amps per square mm. Thus, for a small plunge cut of a 1 by 1 mm tool with a slow cut, only 0.1 amps would be needed. However, for a higher feed rate over a larger area, more current would be used, just like any machining process—removing more material faster takes more power.
The shape of the magnet was originally created as a replacement for the bar magnet as it makes the magnetic field stronger for a magnet of comparable strength. [5] A horseshoe magnet is stronger because both poles of the magnet are closer to each other and in the same plane which allows the magnetic lines of flux to flow along a more direct path between the poles and concentrates the magnetic ...