Search results
Results from the WOW.Com Content Network
The actual Fourier series is the ... thus enlarging the domain of the Fourier ... See Pontryagin duality for a general formulation of this concept in ...
The DTFT is the mathematical dual of the time-domain Fourier series. ... See also the Pontryagin duality for the generalized underpinnings of the Fourier transform.
The 2-adic integers, with selected corresponding characters on their Pontryagin dual group. In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numbers of modulus one), the finite abelian groups (with the discrete topology), and ...
This Fourier series (in frequency) is a continuous periodic function, whose periodicity is the sampling frequency /. The subscript 1 / T {\displaystyle 1/T} distinguishes it from the continuous Fourier transform S ( f ) {\displaystyle S(f)} , and from the angular frequency form of the DTFT.
Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series. Center-right: Original function is discretized (multiplied by a Dirac comb) (top). Its Fourier transform (bottom) is a periodic summation of the original transform.
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).
Mathematically, the duality between position and momentum is an example of Pontryagin duality. In particular, if a function is given in position space, f(r), then its Fourier transform obtains the function in momentum space, φ(p). Conversely, the inverse Fourier transform of a momentum space function is a position space function.