Search results
Results from the WOW.Com Content Network
Curvature is usually measured in radius of curvature.A small circle can be easily laid out by just using radius of curvature, but degree of curvature is more convenient for calculating and laying out the curve if the radius is as large as a kilometer or mile, as is needed for large scale works like roads and railroads.
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
The curvature is the reciprocal of radius of curvature. That is, the curvature is =, where R is the radius of curvature [5] (the whole circle has this curvature, it can be read as turn 2π over the length 2π R). This definition is difficult to manipulate and to express in formulas.
Bend radius, which is measured to the inside curvature, is the minimum radius one can bend a pipe, tube, sheet, cable or hose without kinking it, damaging it, or shortening its life. The smaller the bend radius, the greater the material flexibility (as the radius of curvature decreases, the curvature increases). The diagram to the right ...
where R is evaluated from Earth's azimuthal radius of curvature and h are ellipsoidal heights are each point. The first term on the right-hand side of the equation accounts for the mean elevation and the second term for the inclination. A further reduction of the above Earth normal section length to the ellipsoidal geodesic length is often ...
The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ. The resulting curve then consists of points of the form (r(φ), φ) and can be regarded as the graph of the polar function r.
Equivalently, in polar coordinates (r, θ) it can be described by the equation = with real number b. Changing the parameter b controls the distance between loops. From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle θ as time elapses.
In North America, the measurement of curvature is expressed in degree of curvature. This is done by having a chord of 100 feet (30.48 m) connecting to two points on an arc of the reference rail, then drawing radii from the center to each of the chord's end points. The angle between the radii lines is the degree of curvature. [10]