Search results
Results from the WOW.Com Content Network
The volume of a ship's hull below the waterline (solid), divided by the volume of a rectangular solid (lines) of the same length, height and width, determine a ship's block coefficient. Coefficients [5] help compare hull forms as well: Block coefficient (C b) is the volume (V) divided by the L WL × B WL × T WL. If you draw a box around the ...
This is understood to be a function of the Block coefficient of the vessel concerned, finer lined vessels Cb <0.7 squatting by the stern and vessels with a Cb >0.7 squatting by the head or bow. [1] Squat effect is approximately proportional to the square of the speed of the ship.
[1] In 1678 Thames shipbuilders used a method assuming that a ship's burden would be 3/5 of its displacement. Since tonnage is calculated by multiplying length × beam × draft × block coefficient, all divided by 35 ft 3 per ton of seawater, the resulting formula would be:
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
The dimensionless added mass coefficient is the added mass divided by the displaced fluid mass – i.e. divided by the fluid density times the volume of the body. In general, the added mass is a second-order tensor, relating the fluid acceleration vector to the resulting force vector on the body. [1]
For US waters, the US Code of Federal Regulations require ships and their masters to calculate UKC based on the ship's deepest navigational draft. 33 CFR 157.450 The regulations require the master to discuss the UKC calculation with the maritime pilot as the ship approaches US ports/waters. 33 CFR 157.450
Simpson's rules are used to calculate the volume of lifeboats, [6] and by surveyors to calculate the volume of sludge in a ship's oil tanks. For instance, in the latter, Simpson's 3rd rule is used to find the volume between two co-ordinates. To calculate the entire area / volume, Simpson's first rule is used. [7]
The ship's hydrostatic tables show the corresponding volume displaced. [4] To calculate the weight of the displaced water, it is necessary to know its density. Seawater (1,025 kg/m 3) is more dense than fresh water (1,000 kg/m 3); [5] so a ship will ride higher in salt water than in fresh. The density of water also varies with temperature.