Search results
Results from the WOW.Com Content Network
The volume of a ship's hull below the waterline (solid), divided by the volume of a rectangular solid (lines) of the same length, height and width, determine a ship's block coefficient. Coefficients [5] help compare hull forms as well: Block coefficient (C b) is the volume (V) divided by the L WL × B WL × T WL. If you draw a box around the ...
Ship masters and deck officers can obtain the depth of water from Electronic navigational charts. [2] More dynamic or advanced calculations include safety margins for manoeuvring effects and squat. [7] Computer systems and software can be used to manage and calculate UKC for ships and ports.
The squat effect is the hydrodynamic phenomenon by which a vessel moving through shallow water creates an area of reduced pressure that causes the ship to increase its draft (alternatively decrease the underkeel clearance of the vessel in marine terms) and thereby be closer to the seabed than would otherwise be expected.
This page was last edited on 30 September 2024, at 19:36 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply.
For example, if the ship takes three seconds to travel its own length, then at some point the ship passes, a stern wave is initiated three seconds after a bow wave, which implies a specific phase difference between those two waves. Thus, the waterline length of the ship directly affects the magnitude of the wave-making resistance.
Hull speed can be calculated by the following formula: where is the length of the waterline in feet, and is the hull speed of the vessel in knots. If the length of waterline is given in metres and desired hull speed in knots, the coefficient is 2.43 kn·m −½.
Furthermore, 43% of retirees believe their benefits will be cut in the future, while 47% of nonretired adults worry that Social Security won't be able to pay them a benefit at all once they retire.
The dimensionless added mass coefficient is the added mass divided by the displaced fluid mass – i.e. divided by the fluid density times the volume of the body. In general, the added mass is a second-order tensor , relating the fluid acceleration vector to the resulting force vector on the body.