Search results
Results from the WOW.Com Content Network
The ependyma is made up of ependymal cells called ependymocytes, a type of glial cell. These cells line the ventricles in the brain and the central canal of the spinal cord, which become filled with cerebrospinal fluid. These are nervous tissue cells with simple columnar shape, much like that of some mucosal epithelial cells. [2]
They are joined at the lumen of the tube by junctional complexes, where they form a pseudostratified layer of epithelium called neuroepithelium. [ 1 ] Neuroepithelial cells are the stem cells of the central nervous system , known as neural stem cells , and generate the intermediate progenitor cells known as radial glial cells , that ...
The blood–cerebrospinal fluid barrier (BCSFB) is a fluid–brain barrier that is composed of a pair of membranes that separate blood from CSF at the capillary level and CSF from brain tissue. [14] The blood–CSF boundary at the choroid plexus is a membrane composed of epithelial cells and tight junctions that link them. [ 14 ]
After formation of the tube, the brain forms into three sections; the hindbrain, the midbrain, and the forebrain. The types of neuroectoderm include: Neural crest. pigment cells in the skin; ganglia of the autonomic nervous system; dorsal root ganglia. facial cartilage; aorticopulmonary septum of the developing heart and lungs; ciliary body of ...
The blood–brain barrier (BBB) is a highly selective semipermeable border of endothelial cells that regulates the transfer of solutes and chemicals between the circulatory system and the central nervous system, thus protecting the brain from harmful or unwanted substances in the blood. [1]
All epithelia is usually separated from underlying tissues by an extracellular fibrous basement membrane. The lining of the mouth, lung alveoli and kidney tubules are all made of epithelial tissue. The lining of the blood and lymphatic vessels are of a specialised form of epithelium called endothelium.
The arachnoid mater makes arachnoid villi, small protrusions through the dura mater into the venous sinuses of the brain, which allow CSF to exit the subarachnoid space and enter the blood stream. Unlike the dura mater, which receives a rich vascular supply from numerous arteries, the arachnoid mater is avascular (lacking blood vessels).
The larger arteries throughout the brain supply blood to smaller capillaries. These smallest of blood vessels in the brain, are lined with cells joined by tight junctions and so fluids do not seep in or leak out to the same degree as they do in other capillaries; this creates the blood–brain barrier. [44]