Search results
Results from the WOW.Com Content Network
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.
Its frequency is thus the Lyman-alpha hydrogen frequency, increased by a factor of (Z − 1) 2. This formula of f = c / λ = (Lyman-alpha frequency) ⋅ ( Z − 1) 2 is historically known as Moseley's law (having added a factor c to convert wavelength to frequency), and can be used to predict wavelengths of the K α (K-alpha) X-ray spectral ...
The Lyman Series. The Lyman limit is at the wavelength of 91.2 nm (912 Å), corresponding to a frequency of 3.29 million GHz and a photon energy of 13.6 eV. [3] LyC energies are mostly in the ultraviolet C portion of the electromagnetic spectrum (see Lyman series).
The four visible hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2. Named after Johann Balmer, who discovered the Balmer formula, an empirical equation to predict
where z is the redshift, is the observed wavelength, and 1215.67 Å is the wavelength of Lyman-alpha emission. The Lyman-alpha line in most LAEs is thought to be caused by recombination of interstellar hydrogen that is ionized by an ongoing burst of star formation. Such Lyman alpha emission was first suggested as a signature of young galaxies ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Lyman limit is the short-wavelength end of the hydrogen Lyman series, at 91.13 nm (911.3 Å)(13.6 eV). It corresponds to the energy required for an electron in the hydrogen ground state to escape from the electric potential barrier that originally confined it, thus creating a hydrogen ion. [1] This energy is equivalent to the Rydberg constant.