Search results
Results from the WOW.Com Content Network
Speciation via polyploidy: A diploid cell undergoes failed meiosis, producing diploid gametes, which self-fertilize to produce a tetraploid zygote. Polyploidy is frequent in plants, some estimates suggesting that 30–80% of living plant species are polyploid, and many lineages show evidence of ancient polyploidy (paleopolyploidy) in their genomes.
A study comparing the karyotypes of endangered or invasive plants with those of their relatives found that being polyploid as opposed to diploid is associated with a 14% lower risk of being endangered, and a 20% greater chance of being invasive. [60] Polyploidy may be associated with increased vigor and adaptability. [61]
Polyploidy and speciation in the genus Crepis was the subject of Stebbins' and Babcock's work on plant species formation. C. sibirica , shown here, was a species he examined. In 1935, Stebbins was offered a genetics research position at the University of California, Berkeley working with geneticist E. B. Babcock .
Speciation via polyploidy: A diploid cell undergoes failed meiosis, producing diploid gametes, which self-fertilize to produce a tetraploid zygote.. Polyploidy is pervasive in plants and some estimates suggest that 30–80% of living plant species are polyploid, and many lineages show evidence of ancient polyploidy (paleopolyploidy) in their genomes.
In plants, hybridization mostly generates speciation events, [5] and commonly produces polyploid species. Factors like polyploidy events also plays significant factors for understanding the hybridization events (Example: an F1 hybrid of Jatropha curcas x Ricinus communis ), [ 6 ] because these polyploids tend to have an advantage for the early ...
Once a polyploid is made, either synthetically or naturally, the genome goes through a period of "genome shock". Genome shock can be defined as a stage in which the genome experiences massive reorganization and structural changes to deal with the external stress (X-ray damage, chromosome duplication, etc.) imposed upon the genome. [ 7 ]
A polyploid complex, also called a diploid-polyploid complex, is a group of interrelated and interbreeding species that also have differing levels of ploidy that can allow interbreeding. A polyploid complex was described by E. B. Babcock and G. Ledyard Stebbins in their 1938 monograph The American Species of Crepis : their interrelationships ...
A polyploidy event is theorized to have created the ancestral line that led to all modern flowering plants. [12] That paleopolyploidy event was studied by sequencing the genome of an ancient flowering plant, Amborella trichopoda. [13]