Search results
Results from the WOW.Com Content Network
Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.
The typical embedding of the 1-dimensional circle is in 2-dimensional space, the 2-dimensional sphere is usually depicted embedded in 3-dimensional space, and a general -sphere is embedded in an + -dimensional space. The term hypersphere is commonly used to distinguish spheres of dimension which are thus embedded in a ...
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2] That given point is the center of the sphere, and r is the sphere's radius.
Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P ( x , y , z , w ) , then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.
where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...
In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane ...
An ordinary sphere in three-dimensional space—the surface, not the solid ball—is just one example of what a sphere means in topology. Geometry defines a sphere rigidly, as a shape. Here are some alternatives. Implicit surface: x 2 0 + x 2 1 + x 2 2 = 1; This is the set of points in 3-dimensional Euclidean space found
Topologically, this Lie group is the 3-dimensional sphere S 3.) The preimage of a finite point group is called a binary polyhedral group , represented as l,n,m , and is called by the same name as its point group, with the prefix binary , with double the order of the related polyhedral group (l,m,n).