Search results
Results from the WOW.Com Content Network
Some of the large chemical processes that use catalysis today are the production of methanol and ammonia. Both methanol and ammonia synthesis take advantage of the water-gas shift reaction and heterogeneous catalysis, while other chemical industries use homogenous catalysis. If the catalyst exists in the same phase as the reactants it is said ...
Catalysis (/ k ə ˈ t æ l ə s ɪ s /) is the increase in rate of a chemical reaction due to an added substance known as a catalyst [1] [2] (/ ˈ k æ t əl ɪ s t /). Catalysts are not consumed by the reaction and remain unchanged after it. [3]
The production of the catalyst requires a particular melting process in which used raw materials must be free of catalyst poisons and the promoter aggregates must be evenly distributed in the magnetite melt. Rapid cooling of the magnetite, which has an initial temperature of about 3500 °C, produces the desired precursor.
The two most common catalyst geometries used today are honeycomb catalysts and plate catalysts. The honeycomb form usually consists of an extruded ceramic applied homogeneously throughout the carrier or coated on the substrate. Like the various types of catalysts, their configuration also has advantages and disadvantages.
The catalysts used for catalytic distillation are composed of different substances and packed onto varying objects. The majority of the catalysts are powdered acids, bases, metal oxides, or metal halides. These substances tend to be highly reactive which can significantly speed up the rate of the reaction making them effective catalysts. [3]
The STG+ process uses standard catalysts similar to those used in other gas to liquids technologies, specifically in methanol to gasoline processes. Methanol to gasoline processes favor molecular size- and shape-selective zeolite catalysts, [2] and the STG+ process also utilizes commercially available shape-selective catalysts, such as ZSM-5. [3]
Incipient wetness impregnation (IW or IWI), also called capillary impregnation or dry impregnation, is a commonly used technique for the synthesis of heterogeneous catalysts. Typically, the active metal precursor is dissolved in an aqueous or organic solution. Then the metal-containing solution is added to a catalyst support containing the same ...
Typical catalysts are platinum, and redox-active oxides of iron, vanadium, and molybdenum. In many cases, catalysts are modified with a host of additives or promoters that enhance rates or selectivities. Important homogeneous catalysts for the oxidation of organic compounds are carboxylates of cobalt, iron, and manganese