Search results
Results from the WOW.Com Content Network
The Edwards equation in organic chemistry is a two-parameter equation for correlating nucleophilic reactivity, as defined by relative rate constants, with the basicity of the nucleophile (relative to protons) and its polarizability. This equation was first developed by John O. Edwards in 1954 [1] and later revised based on additional work in ...
The methoxide anion, for example, is both a strong base and nucleophile because it is a methyl nucleophile, and is thus very much unhindered. tert -Butoxide , on the other hand, is a strong base, but a poor nucleophile, because of its three methyl groups hindering its approach to the carbon.
The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R-Br under basic conditions, where the attacking nucleophile is hydroxyl (OH −) and the leaving group is bromide (Br −).
A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...
2,6-Di-tert-butylpyridine, a weak non-nucleophilic base [2] pK a = 3.58; Phosphazene bases, such as t-Bu-P 4 [3] Non-nucleophilic bases of high strength are usually anions. For these species, the pK a s of the conjugate acids are around 35–40. Lithium diisopropylamide (LDA), pK a = 36
In physical organic chemistry, the Grunwald–Winstein equation is a linear free energy relationship between relative rate constants and the ionizing power of various solvent systems, describing the effect of solvent as nucleophile on different substrates. The equation, which was developed by Ernest Grunwald and Saul Winstein in 1948, could be ...
The phenoxide anion (aka phenolate) is a strong nucleophile with a comparable to the one of carbanions or tertiary amines. [3] Generally, oxygen attack of phenoxide anions is kinetically favored, while carbon-attack is thermodynamically preferred (see Thermodynamic versus kinetic reaction control). Mixed oxygen/carbon attack and by this a loss ...
If the nucleophile is a neutral molecule (i.e. a solvent) a third step is required to complete the reaction. When the solvent is water, the intermediate is an oxonium ion. This reaction step is fast. Deprotonation: Removal of a proton on the protonated nucleophile by water acting as a base forming the alcohol and a hydronium ion. This reaction ...