Search results
Results from the WOW.Com Content Network
Line-cylinder intersection is the calculation of any points of intersection, given an analytic geometry description of a line and a cylinder in 3d space. An arbitrary line and cylinder may have no intersection at all. Or there may be one or two points of intersection. [1] Or a line may lie along the surface of a cylinder, parallel to its axis ...
Line–plane intersection. The intersection of a line and a plane in general position in three dimensions is a point. Commonly a line in space is represented parametrically ((), (), ()) and a plane by an equation + + =. Inserting the parameter representation into the equation yields the linear equation
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.
The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms, in order to calculate points of ...
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.
The set of curvature lines of a right circular cylinder consists of the set of circles (maximal curvature) and the lines (minimal curvature). A plane has no curvature lines, because any normal curvature is zero. Hence, only the curvature lines of the cylinder are of interest: A horizontal plane intersects a cylinder at a circle and a vertical ...
As can be seen, the area of the circle defined by the intersection with the sphere of a horizontal plane located at any height equals the area of the intersection of that plane with the part of the cylinder that is "outside" of the cone; thus, applying Cavalieri's principle, it could be said that the volume of the half sphere equals the volume ...
A cylinder is defined as a surface consisting of all the points on all the lines which are parallel to a given line and which pass through a fixed plane curve in a plane not parallel to the given line. [12] Such cylinders have, at times, been referred to as generalized cylinders.