Search results
Results from the WOW.Com Content Network
Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).
where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres. Usually, it is sufficient to use a two-term form of the ...
Woodward's rules, named after Robert Burns Woodward and also known as Woodward–Fieser rules (for Louis Fieser) are several sets of empirically derived rules which attempt to predict the wavelength of the absorption maximum (λ max) in an ultraviolet–visible spectrum of a given compound.
The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
Here the coefficient A is an approximation of the short-wavelength (e.g., ultraviolet) absorption contributions to the refractive index at longer wavelengths. Other variants of the Sellmeier equation exist that can account for a material's refractive index change due to temperature , pressure , and other parameters.
Since that refractive index varies with wavelength, it follows that the angle that the light is refracted by will also vary with wavelength, causing an angular separation of the colors known as angular dispersion. For visible light, refraction indices n of most transparent materials (e.g., air, glasses) decrease with increasing wavelength λ:
The refractive index, , can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly the wavelength in that medium is λ = λ 0 /n, where λ 0 is the wavelength of that light in vacuum.
Here = / is the wavelength, the distance between two wavefronts where the field is equal to the amplitude ; and = / is the period of the field's variation over time, seen at any fixed point in space. Its reciprocal = / is the temporal frequency of the wave measured in f