enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    While the Fourier transform can simply be interpreted as switching the time domain and the frequency domain, with the inverse Fourier transform switching them back, more geometrically it can be interpreted as a rotation by 90° in the time–frequency domain (considering time as the x-axis and frequency as the y-axis), and the Fourier transform ...

  3. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function. Formally, this is expressed as ∫ − ∞ ∞ 1 ⋅ e 2 π i x ξ d ξ = δ ( x ) {\displaystyle \int _{-\infty }^{\infty }1\cdot e^{2\pi ix\xi }\,d\xi =\delta (x)} and more rigorously, it follows since 1 , f ^ = f ( 0 ) = δ , f {\displaystyle \langle ...

  4. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The 2D Z-transform, similar to the Z-transform, is used in multidimensional signal processing to relate a two-dimensional discrete-time signal to the complex frequency domain in which the 2D surface in 4D space that the Fourier transform lies on is known as the unit surface or unit bicircle.

  5. Spectral density estimation - Wikipedia

    en.wikipedia.org/wiki/Spectral_density_estimation

    A common technique in signal processing is to consider the squared amplitude, or power; in this case the resulting plot is referred to as a power spectrum. Because of reversibility, the Fourier transform is called a representation of the function, in terms of frequency instead of time; thus, it is a frequency domain representation. Linear ...

  6. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The inverse Fourier transform converts the frequency-domain function back to the time-domain function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain. A frequency-domain representation may describe either a static function or a particular time period of a dynamic function (signal or system).

  7. Energy (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Energy_(signal_processing)

    Similarly, the spectral energy density of signal x(t) is = | | where X(f) is the Fourier transform of x(t).. For example, if x(t) represents the magnitude of the electric field component (in volts per meter) of an optical signal propagating through free space, then the dimensions of X(f) would become volt·seconds per meter and () would represent the signal's spectral energy density (in volts ...

  8. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    For example, JPEG compression uses a variant of the Fourier transformation (discrete cosine transform) of small square pieces of a digital image. The Fourier components of each square are rounded to lower arithmetic precision, and weak components are eliminated, so that the remaining components can be stored very compactly. In image ...

  9. Parseval's identity - Wikipedia

    en.wikipedia.org/wiki/Parseval's_identity

    In mathematical analysis, Parseval's identity, named after Marc-Antoine Parseval, is a fundamental result on the summability of the Fourier series of a function. The identity asserts the equality of the energy of a periodic signal (given as the integral of the squared amplitude of the signal) and the energy of its frequency domain representation (given as the sum of squares of the amplitudes).