enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greenhouse effect - Wikipedia

    en.wikipedia.org/wiki/Greenhouse_effect

    The greenhouse effect is a reduction in the flux of outgoing longwave radiation, which affects the planet's radiative balance. The spectrum of outgoing radiation shows the effects of different greenhouse gases. The Earth and its atmosphere emit longwave radiation, also known as thermal infrared or terrestrial radiation.

  3. Earth's energy budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_energy_budget

    Longwave radiation is electromagnetic thermal radiation emitted by Earth's surface and atmosphere. Longwave radiation is in the infrared band. But, the terms are not synonymous, as infrared radiation can be either shortwave or longwave. Sunlight contains significant amounts of shortwave infrared radiation. A threshold wavelength of 4 microns is ...

  4. Infrared - Wikipedia

    en.wikipedia.org/wiki/Infrared

    The sensitivity of Earth-based infrared telescopes is significantly limited by water vapor in the atmosphere, which absorbs a portion of the infrared radiation arriving from space outside of selected atmospheric windows. This limitation can be partially alleviated by placing the telescope observatory at a high altitude, or by carrying the ...

  5. Infrared window - Wikipedia

    en.wikipedia.org/wiki/Infrared_window

    The infrared atmospheric window is an atmospheric window in the infrared spectrum where there is relatively little absorption of terrestrial thermal radiation by atmospheric gases. [1] The window plays an important role in the atmospheric greenhouse effect by maintaining the balance between incoming solar radiation and outgoing IR to space.

  6. Illustrative model of greenhouse effect on climate change

    en.wikipedia.org/wiki/Illustrative_model_of...

    Earth constantly absorbs energy from sunlight and emits thermal radiation as infrared light. In the long run, Earth radiates the same amount of energy per second as it absorbs, because the amount of thermal radiation emitted depends upon temperature: If Earth absorbs more energy per second than it radiates, Earth heats up and the thermal radiation will increase, until balance is restored; if ...

  7. Radiative cooling - Wikipedia

    en.wikipedia.org/wiki/Radiative_cooling

    Infrared radiation can pass through dry, clear air in the wavelength range of 8–13 μm. Materials that can absorb energy and radiate it in those wavelengths exhibit a strong cooling effect. Materials that can also reflect 95% or more of sunlight in the 200 nanometres to 2.5 μm range can exhibit cooling even in direct sunlight. [9]

  8. Atmosphere of Earth - Wikipedia

    en.wikipedia.org/wiki/Atmosphere_of_Earth

    Earth is approximately 290 K (17 °C; 62 °F), so its radiation peaks near 10,000 nm, and is much too long to be visible to humans. Because of its temperature, the atmosphere emits infrared radiation. For example, on clear nights Earth's surface cools down faster than on cloudy nights.

  9. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Thermal radiation is a common synonym for infrared radiation emitted by objects at temperatures often encountered on Earth. Thermal radiation refers not only to the radiation itself, but also the process by which the surface of an object radiates its thermal energy in the form of black-body radiation. Infrared or red radiation from a common ...