Search results
Results from the WOW.Com Content Network
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
The induced graph of an ordered graph is obtained by adding some edges to an ordering graph, using the method outlined below. The induced width of an ordered graph is the width of its induced graph. [2] Given an ordered graph, its induced graph is another ordered graph obtained by joining some pairs of nodes that are both parents of another node.
An undirected graph with three vertices and three edges. In one restricted but very common sense of the term, [1] [2] a graph is an ordered pair = (,) comprising: , a set of vertices (also called nodes or points);
The graph of a function on its own does not determine the codomain. It is common [3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective. Graph of the function () = over the interval [−2,+3]. Also shown are the two real roots and the local minimum ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Illustration of a plane, showing the absolute values (unsigned dotted line lengths) of the coordinates of the points (2, 3), (0, 0), (−3, 1), and (−1.5, −2.5). The first of these signed ordered pairs is the abscissa of the corresponding point, and the second value is its ordinate.
The example at left is that of an orthogonal array with symbol set {1,2} and strength 2. Notice that the four ordered pairs (2-tuples) formed by the rows restricted to the first and third columns, namely (1,1), (2,1), (1,2) and (2,2), are all the possible ordered pairs of the two element set and each appears exactly once.
The relation "is a nontrivial divisor of " on the set of one-digit natural numbers is sufficiently small to be shown here: R dv = { (2,4), (2,6), (2,8), (3,6), (3,9), (4,8) }; for example 2 is a nontrivial divisor of 8, but not vice versa, hence (2,8) ∈ R dv, but (8,2) ∉ R dv. If R is a relation that holds for x and y one often writes xRy.