Search results
Results from the WOW.Com Content Network
The atomic ratio is a measure of the ratio of atoms of one kind (i) to another kind (j). A closely related concept is the atomic percent (or at.%), which gives the percentage of one kind of atom relative to the total number of atoms. [1] The molecular equivalents of these concepts are the molar fraction, or molar percent.
Chemical reactions, as macroscopic unit operations, consist of simply a very large number of elementary reactions, where a single molecule reacts with another molecule. As the reacting molecules (or moieties) consist of a definite set of atoms in an integer ratio, the ratio between reactants in a complete reaction is also in integer ratio.
In chemistry, the law of definite proportions, sometimes called Proust's law or the law of constant composition, states that a given chemical compound contains its constituent elements in a fixed ratio (by mass) and does not depend on its source or method of preparation.
In chemistry, the law of multiple proportions states that in compounds which contain two particular chemical elements, the amount of Element A per measure of Element B will differ across these compounds by ratios of small whole numbers. For instance, the ratio of the hydrogen content in methane (CH 4) and ethane (C 2 H 6) per measure of carbon ...
The mole is widely used in chemistry as a convenient way to express amounts of reactants and amounts of products of chemical reactions. For example, the chemical equation 2 H 2 + O 2 → 2 H 2 O can be interpreted to mean that for each 2 mol molecular hydrogen (H 2) and 1 mol molecular oxygen (O 2) that react, 2 mol of water (H 2 O) form.
For substitutional solid solutions, the Hume-Rothery rules are as follows: The atomic radius of the solute and solvent atoms must differ by no more than 15%: [1] % = % %. The crystal structures of solute and solvent must be similar.
In chemistry, the mole fraction or molar fraction, also called mole proportion or molar proportion, is a quantity defined as the ratio between the amount of a constituent substance, n i (expressed in unit of moles, symbol mol), and the total amount of all constituents in a mixture, n tot (also expressed in moles): [1]
The atomic mass mostly comes from the combined mass of the protons and neutrons in the nucleus, with minor contributions from the electrons and nuclear binding energy. [1] The atomic mass of atoms, ions, or atomic nuclei is slightly less than the sum of the masses of their constituent protons, neutrons, and electrons, due to (per E = mc 2).