Search results
Results from the WOW.Com Content Network
Polyploidy is a condition in which the cells of an organism have more than two paired sets of chromosomes. Most species whose cells have nuclei ( eukaryotes ) are diploid , meaning they have two complete sets of chromosomes, one from each of two parents; each set contains the same number of chromosomes, and the chromosomes are joined in pairs ...
All normal diploid individuals have some small fraction of cells that display polyploidy. Human diploid cells have 46 chromosomes (the somatic number, 2n) and human haploid gametes (egg and sperm) have 23 chromosomes (n). Retroviruses that contain two copies of their RNA genome in each viral particle are also said to be diploid.
Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human somatic cell having 45 or 47 chromosomes instead of the usual 46. [1] [2] It does not include a difference of one or more complete sets of chromosomes. A cell with any number of complete chromosome sets is called a euploid cell. [1]
Aneuploidy is often harmful and in mammals regularly leads to spontaneous abortions (miscarriages). Some aneuploid individuals are viable, for example trisomy 21 in humans, which leads to Down syndrome. Aneuploidy often alters gene dosage in ways that are detrimental to the organism; therefore, it is unlikely to spread through populations.
[1] [2] While endoreduplication is often limited to specific cell types in animals, it is considerably more widespread in plants, such that polyploidy can be detected in the majority of plant tissues. [5] Polyploidy and aneuploidy are common phenomena in cancer cells. [6]
Trisomy 21 – Down syndrome, an example of a polysomy at chromosome 21. Polysomy is a condition found in many species, including fungi, plants, insects, and mammals, in which an organism has at least one more chromosome than normal, i.e., there may be three or more copies of the chromosome rather than the expected two copies. [1]
The resolution of these structures results in chromosome breakage, rearrangement, and gamete infertility. Diploidization is often required to restore the cell’s ability to stably go through meiosis. [2] Reduce costs of maintaining large, duplicated genomes Large genomes are costly to synthesize during replication and hard to maintain. [2]
Karyotype of a human with Trisomy 21 (Down syndrome). Trisomies can occur with any chromosome, but often result in miscarriage rather than live birth.For example, Trisomy 16 is most common in human pregnancies, occurring in more than 1%, but the only surviving embryos are those having some normal cells in addition to the trisomic cells (mosaic trisomy 16). [3]