Search results
Results from the WOW.Com Content Network
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
Ludwig Boltzmann defined entropy as a measure of the number of possible microscopic states (microstates) of a system in thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties, which constitute the macrostate of the system. A useful illustration is the example of a sample of gas contained in a container.
The mathematical expressions for thermodynamic entropy in the statistical thermodynamics formulation established by Ludwig Boltzmann and J. Willard Gibbs in the 1870s are similar to the information entropy by Claude Shannon and Ralph Hartley, developed in the 1940s.
The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."
Boltzmann in his original publication writes the symbol E (as in entropy) for its statistical function. [1] Years later, Samuel Hawksley Burbury, one of the critics of the theorem, [7] wrote the function with the symbol H, [8] a notation that was subsequently adopted by Boltzmann when referring to his "H-theorem". [9]
Boltzmann's grave in the Zentralfriedhof, Vienna, with bust and entropy formula. In statistical mechanics, the entropy S of an isolated system at thermodynamic equilibrium is defined as the natural logarithm of W , the number of distinct microscopic states available to the system given the macroscopic constraints (such as a fixed total energy E ...
This link is provided by Boltzmann's fundamental assumption written as S = k B ln Ω , {\displaystyle S=k_{\rm {B}}\ln \Omega ,} where k B is the Boltzmann constant , S is the classical thermodynamic entropy, and Ω is the number of microstates.
Boltzmann's equation = is the realization that the entropy is proportional to with the constant of proportionality being the Boltzmann constant. Using the ideal gas equation of state ( PV = NkT ), It follows immediately that β = 1 / k T {\displaystyle \beta =1/kT} and α = − μ / k T {\displaystyle \alpha =-\mu /kT} so that the ...