Search results
Results from the WOW.Com Content Network
To calculate trunk volume, the tree is subdivided into a series of segments with the successive diameters being the bottom and top of each segment and segment length being equal to the difference in height between the lower and upper diameters, or if the trunk is not vertical, the segment length can be calculated using the limb length formula ...
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.
A unit of volume is a unit of measurement for measuring volume or capacity, the extent of an object or space in three dimensions. Units of capacity may be used to ...
The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}
The SharpeSoft Estimator, displaying an example of a trench calculation. Calculations: Most estimating programs have built-in calculations ranging from simple length, area, and volume calculations to complex industry-specific calculations, such as electrical calculations, utility trench calculations, and earthwork cut and fill calculations.
For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = π / 6 d 3, where d is the diameter of the sphere and also the length of a side of the cube and π / 6 ≈ 0.5236.