Search results
Results from the WOW.Com Content Network
An MRI pulse sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance. [ 1 ] A multiparametric MRI is a combination of two or more sequences, and/or including other specialized MRI configurations such as spectroscopy .
Timing diagram for an MRI spin echo pulse sequence. Graphical representation of a pulse sequence for a homonuclear NOESY experiment. The three bars represent three 90° pulses. An INEPT NMR pulse sequence for a heteronuclear experiment. The thin bar denotes a 90° pulse, while the thick bar denotes a 180° pulse.
Fast spin echo (RARE, FAISE or FSE [10] [11] [12]), also called turbo spin echo (TSE) is an MRI sequence that results in fast scan times. In this sequence, several 180 refocusing radio-frequency pulses are delivered during each echo time (TR) interval, and the phase-encoding gradient is briefly switched on between echoes. [13]
Standard foundation and comparison for other sequences Proton density weighted: PD: Long TR (to reduce T1) and short TE (to minimize T2). [4] Joint disease and injury. [5] High signal from meniscus tears. [6] (pictured) Gradient echo (GRE) Steady-state free precession: SSFP: Maintenance of a steady, residual transverse magnetisation over ...
Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body.
Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.
A BIR-4 pulse is designed simply as two BIR-1 pulses back-to-back. For a 180-degree excitation (inversion), the second BIR-1 sequence is performed with B effective initially pointing along the –y-axis, sweeps to the +z-axis, flips to the