enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).

  3. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  4. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    Though the multiply instruction became common with the 16-bit generation, [4] at least two 8-bit processors have a multiply instruction: the Motorola 6809, introduced in 1978, [5] and Intel MCS-51 family, developed in 1980, and later the modern Atmel AVR 8-bit microprocessors present in the ATMega, ATTiny and ATXMega microcontrollers.

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above.

  6. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Other techniques used for multiplication are the grid method and the lattice method. [70] Computer science is interested in multiplication algorithms with a low computational complexity to be able to efficiently multiply very large integers, such as the Karatsuba algorithm, the Schönhage–Strassen algorithm, and the Toom–Cook algorithm. [71]

  7. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    The Egyptian method of multiplication of integers and fractions, which is documented in the Rhind Mathematical Papyrus, was by successive additions and doubling. For instance, to find the product of 13 and 21 one had to double 21 three times, obtaining 2 × 21 = 42 , 4 × 21 = 2 × 42 = 84 , 8 × 21 = 2 × 84 = 168 .

  8. Grid method multiplication - Wikipedia

    en.wikipedia.org/wiki/Grid_method_multiplication

    The grid method (also known as the box method) of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school , this algorithm is sometimes called the grammar school method.

  9. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The integers , are to be divided into = blocks of bits, so in practical implementations, it is important to strike the right balance between the parameters ,. In any case, this algorithm will provide a way to multiply two positive integers, provided n {\displaystyle n} is chosen so that a b < 2 n + 1 {\displaystyle ab<2^{n}+1} .