Search results
Results from the WOW.Com Content Network
His interest in magic squares led to higher dimensions: magic cubes, tesseracts, etc. He developed a new diagram for the four-dimensional tesseract. This was published in 1962 when he showed constructions of four-, five-, and six-dimensional magic hypercubes of order three. [1] He later was the first to publish diagrams of all 58 magic ...
A combination puzzle collection A disassembled modern Rubik's 3x3. A combination puzzle, also known as a sequential move puzzle, is a puzzle which consists of a set of pieces which can be manipulated into different combinations by a group of operations.
An example of a 3 × 3 × 3 magic cube. In this example, no slice is a magic square. In this case, the cube is classed as a simple magic cube.. In mathematics, a magic cube is the 3-dimensional equivalent of a magic square, that is, a collection of integers arranged in an n × n × n pattern such that the sums of the numbers on each row, on each column, on each pillar and on each of the four ...
It contains no magic squares. The smallest pantriagonal magic cube has order 4. A pantriagonal magic cube is the 3-dimensional equivalent of the pandiagonal magic square – instead of the ability to move a line from one edge to the opposite edge of the square with it remaining magic, you can move a plane from one edge to the other.
A geometric magic square, often abbreviated to geomagic square, is a generalization of magic squares invented by Lee Sallows in 2001. [1] A traditional magic square is a square array of numbers (almost always positive integers ) whose sum taken in any row, any column, or in either diagonal is the same target number .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For the diagonal or pandiagonal classes, one or possibly 2 of the 6 oblique magic squares may be pandiagonal magic. All but 6 of the oblique squares are 'broken'. This is analogous to the broken diagonals in a pandiagonal magic square. i.e. Broken diagonals are 1-D in a 2-D square; broken oblique squares are 2-D in a 3-D cube.
A magic hyperbeam (n-dimensional magic rectangle) is a variation on a magic hypercube where the orders along each direction may be different. As such a magic hyperbeam generalises the two dimensional magic rectangle and the three dimensional magic beam, a series that mimics the series magic square, magic cube and magic hypercube.