Search results
Results from the WOW.Com Content Network
Radio Link Control (RLC) is a layer 2 Radio Link Protocol used in UMTS, LTE and 5G on the Air interface. This protocol is specified by 3GPP in TS 25.322 [1] for UMTS, TS 36.322 [2] for LTE and TS 38.322 [3] for 5G New Radio (NR). RLC is located on top of the 3GPP MAC-layer and below the PDCP-layer. The main tasks of the RLC protocol are:
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.
A one-element-kind network is a trivial case, reducing to an impedance of a single element. A two-element-kind network (LC, RC, or RL) can be synthesised with Foster or Cauer synthesis. A three-element-kind network (an RLC network) requires more advanced treatment such as Brune or Bott-Duffin synthesis. [53]
Under the best reception conditions, i.e. when the best EDGE modulation and coding scheme can be used, 5 timeslots can carry a bandwidth of 5*59.2 kbit/s = 296 kbit/s. In uplink direction, 3 timeslots can carry a bandwidth of 3*59.2 kbit/s = 177.6 kbit/s. [19]
With EDGE, the RLC interface could operate in either acknowledged mode, or unacknowledged mode. In unacknowledged mode, there is no retransmission of missing data blocks, so a single corrupt block would cause an entire upper-layer IP packet to be lost. With non-persistent mode, an RLC data block may be retransmitted if it is less than a certain ...
Flexible bandwidth: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz are standardized. By comparison, UMTS uses fixed size 5 MHz chunks of spectrum. Increased spectral efficiency at 2–5 times more than in 3GPP release 6; Support of cell sizes from tens of meters of radius (femto and picocells) up to over 100 km radius macrocells
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An application of the channel capacity concept to an additive white Gaussian noise (AWGN) channel with B Hz bandwidth and signal-to-noise ratio S/N is the Shannon–Hartley theorem: C = B log 2 ( 1 + S N ) {\displaystyle C=B\log _{2}\left(1+{\frac {S}{N}}\right)\ }