Search results
Results from the WOW.Com Content Network
Connected porosity is more easily measured through the volume of gas or liquid that can flow into the rock, whereas fluids cannot access unconnected pores. Porosity is the ratio of pore volume to its total volume. Porosity is controlled by: rock type, pore distribution, cementation, diagenetic history and composition. Porosity is not controlled ...
Porosity influences fluid storage in geothermal systems, oil and gas fields, and aquifers, making it evident that it plays a significant role in geology. Fluid movement and transport across geological formations, as well as the link between the bulk properties of the rock and the characteristics of particular minerals, are controlled by the ...
As the primary minerals in soil parent material weather, the elements combine into new and colourful compounds. Iron forms secondary minerals of a yellow or red colour, [117] organic matter decomposes into black and brown humic compounds, [118] and manganese [119] and sulfur [120] can form black mineral deposits. These pigments can produce ...
The porosity is a measure of the total pore space in the soil. This is defined as a fraction of volume often given in percent. The amount of porosity in a soil depends on the minerals that make up the soil and on the amount of sorting occurring within the soil structure.
The mineral grains can be dissolved when there is fluid flow. The spaces originally occupied by the minerals will be spare as voids, increasing the porosity of rock. [2] The minerals that are usually dissolved are feldspar, calcite and quartz. [1] Grain dissolution pores results from this process can enhance porosity.
However, there is also a concept of closed porosity and effective porosity, i.e. the pore space accessible to flow. Many natural substances such as rocks and soil (e.g. aquifers, petroleum reservoirs), zeolites, biological tissues (e.g. bones, wood, cork), and man made materials such as cements and ceramics can be considered as porous media ...
In fluid mechanics, materials science and Earth sciences, the permeability of porous media (often, a rock or soil) is a measure of the ability for fluids (gas or liquid) to flow through the media; it is commonly symbolized as k. Fluids can more easily flow through a material with high permeability than one with low permeability. [1]
The porosity of a soil is an important factor that determines the amount of water a soil can hold, how much air it can hold, and subsequently how well plant roots can grow within the soil. [14] Soil porosity is complex. Traditional models regard porosity as continuous. This fails to account for anomalous features and produces only approximate ...