enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    The definition of electrostatic potential, combined with the differential form of Gauss's law (above), provides a relationship between the potential Φ and the charge density ρ: =. This relationship is a form of Poisson's equation. [11]

  3. Static electricity - Wikipedia

    en.wikipedia.org/wiki/Static_electricity

    Electrostatic discharge while fueling with gasoline is a present danger at gas stations. [20] Fires have also been started at airports while refueling aircraft with kerosene. New grounding technologies, the use of conducting materials, and the addition of anti-static additives help to prevent or safely dissipate the buildup of static electricity.

  4. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.

  5. Electrical energy - Wikipedia

    en.wikipedia.org/wiki/Electrical_energy

    Electrical energy is energy related to forces on electrically charged particles and the movement of those particles (often electrons in wires, but not always). This energy is supplied by the combination of current and electric potential (often referred to as voltage because electric potential is measured in volts) that is delivered by a circuit (e.g., provided by an electric power utility).

  6. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    By definition, the change in electrostatic potential energy, U E, of a point charge q that has moved from the reference position r ref to position r in the presence of an electric field E is the negative of the work done by the electrostatic force to bring it from the reference position r ref to that position r.

  7. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    This simple law also correctly accounts for the forces that bind atoms together to form molecules and for the forces that bind atoms and molecules together to form solids and liquids. Generally, as the distance between ions increases, the force of attraction, and binding energy, approach zero and ionic bonding is less favorable. As the ...