Search results
Results from the WOW.Com Content Network
To find the needed , , , and the algorithm uses Floyd's cycle-finding algorithm to find a cycle in the sequence =, where the function: + is assumed to be random-looking and thus is likely to enter into a loop of approximate length after steps.
In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...
All the complex numbers a that solve the equation = are called complex logarithms of z, when z is (considered as) a complex number. A complex number is commonly represented as z = x + iy, where x and y are real numbers and i is an imaginary unit, the square of which is −1.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.
An easy way to calculate log 2 n on calculators that do not have a log 2 function is to use the natural logarithm (ln) or the common logarithm (log or log 10) functions, which are found on most scientific calculators. To change the logarithm base from e or 10 to 2 one can use the formulae: [50] [53]
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
This was considered a minor step compared to the others for smaller discrete log computations. However, larger discrete logarithm records [1] [2] were made possible only by shifting the work away from the linear algebra and onto the sieve (i.e., increasing the number of equations while reducing the number of variables).