Search results
Results from the WOW.Com Content Network
In fluid mechanics, a two-dimensional flow is a form of fluid flow where the flow velocity at every point is parallel to a fixed plane. The velocity at any point on a ...
The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The definition becomes
The two-dimensional (or Lagrange) stream function, introduced by Joseph Louis Lagrange in 1781, [1] is defined for incompressible (divergence-free), two-dimensional flows. The Stokes stream function , named after George Gabriel Stokes , [ 2 ] is defined for incompressible, three-dimensional flows with axisymmetry .
This is true in the case of two-dimensional potential flow (i.e. two-dimensional zero viscosity flow), in which case the flowfield can be modeled as a complex-valued field on the complex plane. Vorticity is useful for understanding how ideal potential flow solutions can be perturbed to model real flows.
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.
Flow is 2D: u 3 = ∂u 1 / ∂x 3 = ∂u 2 / ∂x 3 = 0; The first two scale factors of the coordinate system are independent of the last coordinate: ∂h 1 / ∂x 3 = ∂h 2 / ∂x 3 = 0, otherwise extra terms appear. The stream function has some useful properties:
In fluid dynamics, the lift per unit span (L') acting on a body in a two-dimensional flow field is directly proportional to the circulation, i.e. it can be expressed as the product of the circulation Γ about the body, the fluid density , and the speed of the body relative to the free-stream : ′ =
Kovasznay flow corresponds to an exact solution of the Navier–Stokes equations and are interpreted to describe the flow behind a two-dimensional grid. The flow is named after Leslie Stephen George Kovasznay, who discovered this solution in 1948. [1] The solution is often used to validate numerical codes solving two-dimensional Navier-Stokes ...