enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Therefore, the graph of the function f(x − h) = (x − h) 2 is a parabola shifted to the right by h whose vertex is at (h, 0), as shown in the top figure. In contrast, the graph of the function f(x) + k = x 2 + k is a parabola shifted upward by k whose vertex is at (0, k), as shown in the center figure.

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Every polynomial function is continuous, smooth, and entire. The evaluation of a polynomial is the computation of the corresponding polynomial function; that is, the evaluation consists of substituting a numerical value to each indeterminate and carrying out the indicated multiplications and additions.

  4. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots. As a cubic polynomial has three roots (not necessarily distinct) by the fundamental theorem of algebra, at least one root must be real.

  5. Polynomial transformation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_transformation

    Polynomial transformations have been applied to the simplification of polynomial equations for solution, where possible, by radicals. Descartes introduced the transformation of a polynomial of degree d which eliminates the term of degree d − 1 by a translation of the roots. Such a polynomial is termed depressed. This already suffices to solve ...

  6. Category:Polynomial functions - Wikipedia

    en.wikipedia.org/wiki/Category:Polynomial_functions

    Ring of polynomial functions; S. Septic function; Sextic function; Z. Zero function This page was last edited on 6 November 2023, at 01:03 (UTC). Text is available ...

  7. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.

  8. Complex quadratic polynomial - Wikipedia

    en.wikipedia.org/wiki/Complex_quadratic_polynomial

    Quadratic polynomials have the following properties, regardless of the form: It is a unicritical polynomial, i.e. it has one finite critical point in the complex plane, Dynamical plane consist of maximally 2 basins: basin of infinity and basin of finite critical point ( if finite critical point do not escapes)

  9. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree. In the case of a non-square-free polynomial, if neither a nor b is a multiple root of p, then V(a) − V(b) is the number of distinct real roots of P.