Search results
Results from the WOW.Com Content Network
The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]
The IBM ILOG CPLEX Optimizer solves integer programming problems, very large [3] linear programming problems using either primal or dual variants of the simplex method or the barrier interior point method, convex and non-convex quadratic programming problems, and convex quadratically constrained problems (solved via second-order cone programming, or SOCP).
SageMath is designed partially as a free alternative to the general-purpose mathematics products Maple and MATLAB. It can be downloaded or used through a web site. SageMath comprises a variety of other free packages, with a common interface and language. SageMath is developed in Python.
SciPy (de facto standard for scientific Python) has scipy.optimize solver, which includes several nonlinear programming algorithms (zero-order, first order and second order ones). IPOPT (C++ implementation, with numerous interfaces including C, Fortran, Java, AMPL, R, Python, etc.) is an interior point method solver (zero-order, and optionally ...
GNU Octave is a scientific programming language for scientific computing and numerical computation.Octave helps in solving linear and nonlinear problems numerically, and for performing other numerical experiments using a language that is mostly compatible with MATLAB.
In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...
Given a transformation between input and output values, described by a mathematical function, optimization deals with generating and selecting the best solution from some set of available alternatives, by systematically choosing input values from within an allowed set, computing the output of the function and recording the best output values found during the process.
The order of differencing can be reversed for the time step (i.e., forward/backward followed by backward/forward). For nonlinear equations, this procedure provides the best results. For linear equations, the MacCormack scheme is equivalent to the Lax–Wendroff method .