Search results
Results from the WOW.Com Content Network
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
Current research in microfluidics is focused on developing point-of-care diagnostics and cell sorting techniques (see lab-on-a-chip), and understanding cell behavior (e.g. cell growth, cell aging). In the field of diagnostics, the lateral flow test is a common microfluidic device platform that utilizes capillary forces to drive fluid transport ...
Cellular factors include reduced number and function of bone-marrow derived endothelial progenitor cells. [25] and reduced ability of those cells to form blood vessels. [26] Formation of additional capillaries and larger blood vessels (angiogenesis) is a major mechanism by which a cancer may help to enhance its own growth.
Various life forms found in nature exploit surface tension in different ways. Hu [8] and his colleagues looked at a few examples to create devices that mimic the abilities of their natural counterparts to walk on water, jump off the liquid interface, and climb menisci. Two such devices were a rendition of the water strider. Both devices ...
Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels.Very often, CE refers to capillary zone electrophoresis (CZE), but other electrophoretic techniques including capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis and micellar ...
Her research extended to investigations of other surface phenomena including capillarity and contact angles. [5] Pockels published 14 scientific papers, mostly in German journals, the last one being published in 1926. [14] She was eventually recognized as a pioneer in the emerging field of surface science. [12]
Figure 1: An example of a porous structure exhibiting capillary condensation.. In materials science and biology, capillary condensation is the "process by which multilayer adsorption from the vapor [phase] into a porous medium proceeds to the point at which pore spaces become filled with condensed liquid from the vapor [phase]."
Capillary bridges also widely spread in living nature. Bugs, flies, grasshoppers and tree frogs are capable to adhere to vertical rough surfaces because of their ability to inject wetting liquid into the pad-substrate contact area. This way is created long range attractive interaction due to the formation of capillary bridges. [25]