Search results
Results from the WOW.Com Content Network
For other uses, other types of pure silicon may be employed. These include hydrogenated amorphous silicon and upgraded metallurgical-grade silicon (UMG-Si) used in the production of low-cost, large-area electronics in applications such as liquid crystal displays and of large-area, low-cost, thin-film solar cells. Such semiconductor grades of ...
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
Silicon carbide (SiC), also known as carborundum (/ ˌ k ɑːr b ə ˈ r ʌ n d əm /), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor , it occurs in nature as the extremely rare mineral moissanite , but has been mass-produced as a powder and crystal since 1893 for use as an abrasive .
Crystalline silicon has a metallic luster and a grayish color. Single crystals can be grown with the Czochralski process. Crystalline silicon can be doped with elements such as boron, gallium, germanium, phosphorus or arsenic. Doped silicon is used in solid-state electronic devices, such as solar cells, rectifiers and computer chips. [1]
Silicon is a critical element for fabricating most electronic circuits. Semiconductor devices can display a range of different useful properties, such as passing current more easily in one direction than the other, showing variable resistance, and having sensitivity to light or heat.
In most silicate minerals, silicon is tetrahedral, being surrounded by four oxides. The coordination number of the oxides is variable except when it bridges two silicon centers, in which case the oxide has a coordination number of two. Some silicon centers may be replaced by atoms of other elements, still bound to the four corner oxygen corners.
Silicon is one of the most abundant elements on Earth, and is considered necessary for life. [2] [3] The silica cycle has significant overlap with the carbon cycle (see carbonate–silicate cycle) and plays an important role in the sequestration of carbon through continental weathering, biogenic export and burial as oozes on geologic timescales ...
Silicon used in semiconductor device manufacturing is currently fabricated into boules that are large enough in diameter to allow the production of 300 mm (12 in.) wafers. Germanium (Ge) was a widely used early semiconductor material but its thermal sensitivity makes it less useful than silicon.